

URLjects - Django routing rethinked

	Installation
	Testing

	Using URLjects
	Using in urls.py

	Using view_include

	Using the RouteMap

	U object

	View name handling
	Functional views

	String views

	Class Views

	Namespace

Installation

URLjects are supported on Python 2.7 and 3.4, the tests are also passing on
pypy.

Easy installation:

$ easy_install urljects

PIP:

$ pip install urljects

You don’t have to add urljects to INSTALLED_APPS

Testing

Run tests with:

$ python setup.py test

Using URLjects

Under URLjects there are three main ways of urls. You should stick to one and
avoid mixing them.

Using in urls.py

This is pretty standard way of dealing with routing, you put your urls into
file called urls.py and register that file with django. Nice and tidy.

from urljects import url, U, slug
from views import main_view, ClassView

urlpatterns = ('',
 url(U / 'main', main_view),
 url(U / slug / 'classy', ClassView)
)

Note that you have to import urljects.url and not django version.

Using view_include

If you are tired of having so many urls.py files you can use view_include
to directly import views to main urlconf. So your urlconf will look like this:

urlpatterns = [
 url(U / 'eshop', view_include(eshop_views)),
 url(U / 'blog', view_include(blog_views, namespace='named'))
]

Note that views have to either decorated with url_view function or for class
based views they will have to inherit from URLView class.

Class based views:

class DetailView(View, URLView):
 url = U / 'detail' / slug
 url_name = 'detail_view'
 url_priority = -1

Function based views:

@url_view(U / 'detail' / slug, priority=-1)
def detail_view(request):
 return render()

If you don’t specify url name for functional views it will be derived from
function name.

Using the RouteMap

An alternative to URLView and @url_view is the RouteMap.

The RouteMap is an object that maps URLs to routes. Usually, one is created
in every view module, and named “route”. With class and callable views,
it’s used as a decorator:

from urljects import RouteMap
route = RouteMap()

@route(U / 'post')
def post_view():
 return render()

@route(U / 'detail', name='detail_view')
class DetailView(View):
 pass

It can also be used as a function, typically for view names as strings:

route(U / 'profile', 'users_app.views.profile_view')

In urls.py, use the RouteMap’s include method:

from my_app.blog.views import route as blog_routemap
urlpatterns = [
 blog_routemap.include(U / 'blog')
]

The @route decorator may be used multiple times on a single view.
The URLs it records are included in the order the views are defined in,
or they can be given a priority:

@route(U / slug, priority=-1)
def post_view():
 """ A catch-all view with low priority """
 return render()

U object

U object is URLPattern instance. It is used as replacement over regular
expression. It is similar to .. _Pathlib.Path: https://docs.python.org/3/library/pathlib.html

You should combine U object with RE patterns, you can do it like this:

from urljects import U, slug, url, view_include

choice = r'(?P<choice>YES|NO)')

urlpatterns = [
 url(U / 'detail' / slug, views.DetailView), # -> r'^detail/(?P<slug>[\w-]+)$'
 url(U / choice, views.ChoiceView) # -> r'^(?P<choice>YES|NO)')'

 url(U / 'eshop', view_include(eshop_views)) # -> r'^eshop/' + included urls
]

View name handling

If you don’t specify name to urljects.url it will be derived automatically.

Functional views

url(U, view=views.test_view)

here view.__name__ will be used.

String views

url(U / 'test', view='views.test_view')

the last part of the string will be used.

Class Views

url(U / 'class_view', view=views.ClassTestView)

ClassTestView.url_name will be used.

Namespace

So far there is no support for auto-guessing namespaces based on app.

Index

 nav.xhtml

 Table of Contents

 		
 URLjects - Django routing rethinked

 		
 Installation

 		
 Testing

 		
 Using URLjects

 		
 Using in urls.py

 		
 Using view_include

 		
 Using the RouteMap

 		
 U object

 		
 View name handling

 		
 Functional views

 		
 String views

 		
 Class Views

 		
 Namespace

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

